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Abstract. The intermittent nature of the wind creates significant uncertainty in 
the operation of power systems with increased wind power penetration. Con- 
siderable efforts have been made for the accurate prediction of the wind power 
using either statistical or physical models. In this paper, a method based on Ar-
tificial Neural Network (ANN) is proposed in order to improve the predictions 
of an existing neuro-fuzzy wind power forecasting model taking into account 
the evaluation results from the use of this wind power forecasting tool. Thus, an 
improved wind power forecasting is achieved and a better estimation of the 
confidence interval of the proposed model is provided. 
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1   Introduction 

Wind power is one of the dominant Renewable Energy Sources (RES) since, by the 
end of 2004, over 47 GW have been installed worldwide, 34 GW of which in Europe 
[1]. In Greece, the installed wind power capacity is 567 MW, 164.5 MW of which in 
the autonomous power systems of Greek islands [2]. The intermittent nature of wind 
power production forces the power systems operators maintaining significant percent-
age of spinning reserve to compensate for uncertainties in wind power product-ion. 
Sometimes, especially in autonomous power systems with increased wind power 
penetration, operators may even consider totally unreliable the wind power production 
leading the system to operate with excessive spinning reserve and thus increasing its 
operating cost. 

In the past few years, there have been several studies on wind power forecasting. 
The simplest method of all, more suitable for shorter prediction horizon, is the persis-
tence method, considering that the expected wind power production in the following 
few hours will be the same as the current hour. The accuracy of the persistence 
method is reduced as the prediction horizon is increased. Wind power forecasting 
methods include models based on statistical methods as presented in [3] and methods 
based on Artificial Neural Networks (ANN), e.g. Radial Basis Functions topology [4] 
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or adaptive Fuzzy-Neural networks [5, 6]. Some efforts have been also made with 
time series and ARMA models, requiring however, transformation and standardiza-
tion, given the non-Gaussian nature of the hourly wind speed distribution and the non-
stationary nature of its daily evolution [7]. A more detailed literature overview of the 
developed wind power forecasting tools is described in [8]. Some of these methods 
use meteorological information, mainly wind speed, especially for longer period fore-
casts, provided by Numerical Weather Prediction (NWP) models like SKIRON and 
Hirlam. 

The impact of improved wind forecasting tool with actual data for the last 4 
months of 2001 has shown that improvement of wind forecasting errors has signifi-
cant economic impact in the operation of the power system due to the reduction of 
spinning reserve requirements [9]. The reduction in the operating cost is about 1.8%-
3.5% if a reliable forecast is used that allows the reduction of spinning reserve in the 
50% of wind power production. The reduction in the operating cost is about 2.3%-
5.3% if a reliable forecast is used that allows the reduction of spinning reserve in the 
20% of wind power production. Therefore, the more reliable the wind power forecast-
ing is, the more confident the operators of the power systems are for the wind power 
production forecast and thus, the spinning reserve requirements can be further re-
duced, leading to the reduction of the power system operating cost. 

The developers of wind power forecasting models provide their end-users with the 
Mean Absolute Percentage Error (MAPE) index for their model expressed as a per-
centage of the installed wind power capacity. This index, however, does not give very 
much information neither about the performance of the wind power forecasting tool 
for different forecasting horizon nor about its performance for a variety of forecasted 
wind power values. Some wind power forecasting tools also provide as output the 
confidence interval of the wind power forecast based on the estimation of the weather 
stability and other parameters having to do with the forecasting model itself [10]. 
Such information helps the operators to estimate the range of the expected wind 
power production and thus the spinning reserve requirements to cope with the wind 
power production uncertainty. 

In this paper, a method is proposed based on ANN, in order to improve the per-
formance of an existing wind power forecasting tool. This method uses as inputs the 
outputs of the wind power forecasting model and trains the ANN using the results 
from the evaluation of the forecasting model. The output of the ANN is a new and 
improved wind power forecast. Moreover, an 85% confidence interval is provided to 
the operators for this improved wind power forecast.  

The methodology followed to derive the improved wind power forecast is de-
scribed in detail in Section 2. This methodology is applied to the wind power forecast-
ing model developed within the MORE CARE framework [11, 12] that was executed 
off-line to produce wind power forecasts for a period with available meteorological 
data from SKIRON for the power system of Crete. Some information on the power 
system of Crete is provided in Section 3 concerning mainly the wind power. Section 4 
presents results from the application of the proposed methodology to the power sys-
tem of Crete evaluating the improved forecast obtained using as a criterion the change 
in the 85% interval and the MAPE. Conclusions are drawn in Section 5. 
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2   Improved Wind Power Forecasting 

In this paper, an existing neuro-fuzzy wind power forecasting tool, considered as a 
black box, is combined with an ANN, whose general structure is shown in Fig. 1, in 
order to improve the accuracy of the wind power forecast. 
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Fig. 1. General structure of the combined ANN and Neural –Fuzzy Network 

The improved wind power forecasting methodology consists of the following 4 
steps:  

1. Creation of two independent Data Sets (DS) by off-line execution of the fore-
casting model, 

2. Split of DS into Learning Set (LS) and Test Set (TS), 
3. Creation and Training of the ANNs, 
4. Evaluation of the ANN outputs and confidence interval derivation. 

2.1  Preparation of the LS and TS  

The DS for the ANN model is created as follows: The MORE CARE wind power 
prediction tool was run off-line for the last 4 months of 2001 providing forecasts for 
each hour at 24 hour steps. The next 24 hours forecasted values plus an indicator for 
the current hour are used as inputs for the DS, which consists of 663 time-series in our 
case study. This DS contains periods of various wind power production levels ranging 
from very low to very high wind power production.  

To ensure more reliable results and to avoid confidence intervals with values below 
zero or above the wind power capacity, the DS is split into two major classes accord-
ing to the forecasted values: the first one, with half the data contains values of 0-10 
MW (DS1) and the second one with the rest available predictions has prediction val-
ues of 10-67.35 MW (DS2).  

Each DS is split into a LS and TS. In our case, 2/3 of the data in each DS was used 
for training and 1/3 was used for the test. The TS data was used for estimating the 
confidence interval of the existing forecasting tool. Thus, an objective comparison 
with the same set of data can be performed. 

2.2   Creation and Training of the ANNs  

For each one of DS1 and DS2 and for each hour, an ANN has been developed, thus a 
total number of 48 ANNs has been used.  

After the training procedure, the neural network is able to learn (generalize) the in-
put-output relationship and thus to predict the wind power to any input vector outside 
the training set.However, good generalization depends on the network structure. In 
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particular, small size networks are not able to approximate complicated input-output 
relationships. On the other hand, recent studies on learning versus generalization 
network capabilities including the VC dimension [13] indicate that an unnecessarily 
large network size heavily deteriorating generalization. In our approach, we adopt a 
back-propagation variant [14] in a constructive framework [15], which begins with a 
small size network and subsequently adds neurons to improve the network perform-
ance. A validation data set has been also used during training to control learning with 
respect to the generalization ability of the network. 

In Table 1, the results of different extensively studied ANN architectures for a va-
riety of hour-ahead predictions are presented. The selected architecture is the one with 
the minimum MAPE during the whole prediction horizon. In the specific study, the 
optimal ANN structure for both classes was the one consisting of 3 hidden layers of 
13 neurons each, namely 25-13-13-13-1. In Fig. 2, the performance of the selected 
ANN architecture for different number of epochs is examined as far as MAPE is con-
cerned. According to this figure, the optimal number of epochs was 15. 

Table 1. MAPE of TS in the 10-67.35 MW class for different ANN architectures 

MAPE of 10-67.35 MW class ANN architecture 
1 hour ahead 

prediction 
12 hour ahead 

prediction 
24 hour ahead 

prediction 
25-13-1 
25-25-1 

25-13-13-1 
25-25-25-1 

25-13-13-13-1 

10.72% 
10.05% 
9.59% 

10.01% 
9.40% 

12.68% 
11.86% 
12.06% 
11.69% 
11.66% 

11.27% 
10.74% 
10.44% 
10.41% 
10.22% 
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Fig. 2. Performance of the 25-13-13-13-1 ANN architecture for the MAPE estimation of the 
24th hour ahead prediction 

2.3   Evaluation of the ANN Output and Confidence Interval Derivation 

The output of the ANN is the improved wind power prediction for each studied inter-
val. In order to evaluate the performance of the ANN, the MAPE is calculated com-
paring the outputs of the improved wind power forecast with the actual wind power 
production from the wind parks of Crete for the period of study; i.e. 4 last months of 
2001. The MAPE index for the ANN is calculated as follows:  
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where er is the wind power prediction error, Pf is the forecasted wind power provided 
by the ANN, Pa is the actual wind power, Pi is the total installed wind power capacity 
and N is the number of hours studied (for our application N=24). For the island of 
Crete, Pi=67.35 MW, for the year 2001. Negative values of er mean underestimation 
of the ANN output, while positive mean overestimation. 

Overestimation of wind power, leads to lack of energy unless sufficient spinning 
reserve has been committed to the power system. Thus, the higher the overestimation 
of the forecasting model, the higher the spinning reserve that should be maintained, 
leading to more units to be committed for the same load and thus the higher the oper-
ating cost. On the other hand, underestimation of wind power has as an impact that 
the committed units operate in lower efficiency operating points increasing their oper-
ating cost. 

After the evaluation of the improved wind power forecast tool is complete, an 85% 
confidence interval of the forecasting error is derived in order to help the operators to 
determine their spinning reserve policy as far as wind power forecast uncertainty is 
concerned. 

3   Crete Power System 

Crete is the largest isolated power network in Greece with significant wind power 
penetration around 10% of the annual island demand since 2000. The instantaneous 
wind power penetration has reached 39% during some valley hours in winter and 
early spring [9]. The installed wind power capacity on the island is currently 
105.15 MW. There are also installed 690 MW of various thermal units, such as diesel, 
gas turbines, steam turbines and one combined cycle unit in three power plants.  

Public Power Corporation (PPC) is the operator of this power system and is obliged 
to buy at specific price (90% of the retail low voltage price), the energy produced by 
the wind park installations. Thus, the improved wind power forecasting and the estima-
tion of its confidence interval are significant, especially during low load periods, when 
slow response units, steam turbines and combined cycle units operate to avoid commit-
ting surplus units or not having enough units to compensate for unit loss. 

In our study, data from the last 4 months of 2001 was used, when the installed 
wind power capacity was 67.35 MW. 

4   Results 

In Table 2, the MAPE for both the existing neuro-fuzzy wind power forecasting 
model and the proposed methodology are presented for the TS data. In all cases, espe-
cially in the 0-10 MW class, the proposed methodology offers much better results. 
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Table 2. Comparison of TS MAPE for the 0-10 MW class and for the 10-67.35 MW class for 
the existing wind power forecasting tool (neuro-fuzzy model) and the proposed model (ANN) 

0-10 MW class  
MAPE on test test 

 10-67.35 MW class  
MAPE on test test 

Estimation 
(Hours 
ahead) Neuro-fuzzy 

model 
Improved 

model (ANN)
 Neuro-fuzzy 

model 
Improved 

model (ANN) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

19.10% 
21.70% 
20.74% 
21.93% 
22.27% 
21.07% 
23.40% 
25.58% 
20.82% 
21.53% 
21.46% 
24.44% 
23.79% 
23.14% 
23.49% 
24.01% 
28.10% 
24.20% 
22.54% 
23.67% 
23.30% 
23.16% 
22.40% 
24.32% 

9.04% 
11.88% 
11.53% 
11.22% 
12.32% 
11.29% 
11.88% 
14.56% 
11.37% 
13.53% 
12.10% 
14.37% 
14.01% 
12.48% 
11.53% 
12.29% 
14.57% 
12.18% 
13.70% 
11.73% 
13.45% 
13.84% 
13.12% 
12.79% 

 18.10% 
15.38% 
16.71% 
16.70% 
15.41% 
15.43% 
15.63% 
15.36% 
16.64% 
18.53% 
16.94% 
17.52% 
15.30% 
15.45% 
16.59% 
17.12% 
17.68% 
17.00% 
15.48% 
15.53% 
17.41% 
16.46% 
19.44% 
17.52% 

9.40% 
9.54% 
9.37% 

11.16% 
10.03% 
10.46% 
10.69% 
10.43% 
11.27% 
11.16% 
11.02% 
11.66% 
11.21% 
10.82% 
11.61% 
11.23% 
10.00% 
9.94% 

11.05% 
9.51% 

10.33% 
9.99% 
8.96% 

10.22% 

The MAPE differences range from 8.00% (10th hour estimation) to 13.53% (17th hour 
estimation) for the 0-10 MW class and from 4.09% (13th hour estimation) to 10.48% 
(23rd hour estimation) for the 10-67.35 MW class. 

In Tables 3 and 4, the 85% confidence intervals, expressed as 7.5% and 92.5% per-
centiles (ptl) on the test set for the two classes of wind power forecasting values are 
presented, according to both the outputs of the existing model and the proposed 
method, respectively. 

The proposed methodology provides significant reduction to each confidence in-
terval range and much smaller underestimated values, so the power system operator 
can estimate the wind power production more accurately avoiding committing more 
units than necessary. More specifically, in the 0-10 MW class, the existing model’s 
lowest underestimating errors are always under -40%, while in the proposed model 
the corresponding values only once exceed -30%. In the 10-67.35 MW class, the 
underestimation error differences are smaller, but in almost every case are over 10%. 
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Table 3. 85% confidence interval (c.i.) for the estimated error of 0-10 MW class and 10-67.35 
MW class of the wind power forecasting tool (neuro-fuzzy model) 

0-10 MW class  10-67.35 MW class Estimation 
(Hours ahead) 7.5% ptl 92.5% ptl  7.5% ptl 92.5% ptl 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

-41.80% 
-46.52% 
-42.52% 
-46.38% 
-48.88% 
-42.88% 
-50.01% 
-50.09% 
-44.91% 
-48.35% 
-48.08% 
-52.55% 
-50.71% 
-48.77% 
-52.14% 
-50.47% 
-54.43% 
-53.52% 
-49.90% 
-51.27% 
-49.34% 
-50.36% 
-51.51% 
-53.64% 

2.04% 
0.99% 
3.26% 
1.56% 
2.15% 
0.98% 
0.44% 
0.93% 
7.22% 
8.37% 
8.59% 
7.90% 
8.08% 
2.60% 
5.45% 
7.77% 
0.64% 
2.95% 
6.19% 
7.98% 
2.07% 
8.47% 
3.19% 
1.92% 

 -42.75% 
-40.18% 
-35.79% 
-43.21% 
-31.54% 
-33.81% 
-31.40% 
-32.43% 
-35.25% 
-35.28% 
-36.97% 
-42.85% 
-33.40% 
-30.44% 
-33.30% 
-35.33% 
-34.35% 
-31.31% 
-28.21% 
-29.53% 
-33.38% 
-27.19% 
-31.55% 
-30.99% 

14.80% 
15.96% 
14.87% 
13.47% 
20.46% 
17.85% 
20.88% 
13.35% 
17.70% 
19.20% 
21.60% 
19.36% 
16.28% 
26.17% 
22.94% 
23.81% 
25.29% 
26.49% 
23.93% 
24.03% 
26.60% 
32.02% 
27.59% 
30.92% 

 

For both classes, smaller differences of the confidence intervals’ largest overestima-
tion values are observed, especially in the 0-10 MW class, where for some estimations 
the initial model gives slightly better results. 

Figs. 3 and 4 provide the difference in the forecast and actual operation for specific 
values of the studied period for the existing neuro-fuzzy model and the proposed 
ANN model. For each case, the minimum and maximum value of the wind power is 
also displayed, as it results from the upper and lower boundary of the 85% confidence 
interval. The reference date is the 28/12/2001 and prediction time 12:00. This predic-
tion time-series offers wide variation of the predicted values from the neuro-fuzzy 
model, the input data of the ANN model, ranging between 5.18 MW and 45.23 MW. 
Thus a more representative analysis of models’ performance can be done. The se-
lected time-series also provides acceptable number of data for both classes of wind 
power prediction of the initial model (8 data from the 0-10 MW class and 16 data 
from 10-67.35 MW class). The comparison of Figs. 3 and 4 proves that the perform-
ance of the proposed ANN is much better than the existing model, since the ANN 
wind power estimation is much more accurate, while its 85% confidence interval is 
significantly narrower. 
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Table 4. 85% confidence interval (c.i.) for the estimated error of 0-10 MW class and 10-67.35 
MW class of the proposed ANN 

0-10 MW class  10-67.35 MW class Estimation 
(Hours ahead) 7.5% ptl 92.5% ptl  7.5% ptl 92.5% ptl 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

-13.12% 
-21.88% 
-9.50% 

-14.83% 
-15.91% 
-20.91% 
-25.95% 
-33.77% 
-20.40% 
-16.93% 
-21.77% 
-25.00% 
-20.07% 
-21.21% 
-18.18% 
-20.30% 
-27.83% 
-19.05% 
-19.19% 
-19.20% 
-15.55% 
-20.42% 
-19.44% 
-28.20% 

1.36% 
3.18% 
0.70% 
1.31% 
1.81% 
2.83% 
2.07% 
1.88% 
1.87% 
4.43% 
1.90% 
1.54% 
3.54% 
2.46% 
0.80% 
1.95% 
5.50% 
2.62% 
2.81% 
2.88% 
2.32% 
5.06% 
2.92% 
2.69% 

 -14.94% 
-15.56% 
-16.73% 
-18.17% 
-15.72% 
-16.32% 
-15.90% 
-20.45% 
-16.48% 
-22.03% 
-15.97% 
-20.39% 
-17.29% 
-15.86% 
-20.65% 
-20.03% 
-21.10% 
-11.62% 
-17.35% 
-14.00% 
-20.10% 
-17.02% 
-16.32% 
-14.99% 

6.64% 
10.57% 
6.25% 
4.00% 
8.64% 
6.84% 
6.88% 
9.11% 

10.23% 
6.50% 
9.65% 
7.32% 
9.60% 

12.14% 
13.39% 
9.82% 
8.88% 
8.42% 

10.46% 
8.46% 
8.01% 
8.36% 
6.40% 

12.34% 
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Fig. 3. Forecast versus actual wind power and min/max boundaries of 85% confidence intervals 
for the existing neuro-fuzzy model for the 28/12/2001 at 12:00 
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Fig. 4. Forecast versus actual wind power and min/max boundaries of 85% confidence intervals 
for the proposed ANN model for the 28/12/2001 at 12:00 

The economic impact of the improvements of the wind power forecasting, espe-
cially for confidence interval, is due to the reduction of spinning reserve requirements 
to compensate for the wrong estimation of wind. It is considered that the spinning 
reserve requirements is given by the following equation: 

powerwindervalintconfforecloadresSpin ___1.0_ ⋅+⋅=  (3) 

where conf_interval is the 92.5% percentile (ptl) values used corresponding to the 
larger user-defined acceptable wind underestimation level, load_forec is the fore-
casted load and wind_power is the installed wind power capacity. 

The impact of reduced spinning reserve is shown in Table 5 for two characteristic 
days corresponding to the two classes of the test sets and for different loading condi-
tions. During Day 1, low loading, the wind power forecast never exceeded 10 MW, 
while during Day 2, high loading, the wind power forecast was always over 10 MW 
so the corresponding data should be used from Tables 3 and 4. 

It can be seen that there are significant savings in the operating cost during medium 
to high wind power conditions during high load conditions reaching 1.00%. This is 
due to the fact that the more expensive gas turbines are committed for less time, or 
less of these units are required. 

Table 5. Characteristic days used for indicating the impact of improved wind power confidence 
interval 

Day Total daily 
demand 
(MWh) 

Average Wind 
Power Production 

(MW) 

Characterization Percentage 
Savings 

Day 1 5197.4 1.3 Low Load, Low Wind 
Production 

0.05% 

Day 2 7396.5 26.6 High Load, Medium 
Wind Production 

1.00% 
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5   Conclusions 

This paper proposes a combined neuro-fuzzy and ANN model for wind power fore-
casting. The output of an existing neuro-fuzzy wind power prediction tool is used as 
input to the proposed ANN structure. It is shown that the proposed ANN model ex-
ploits the past performance of the neuro-fuzzy model and provides more accurate 
wind power forecasting values. More specifically, the proposed method offers signifi-
cant improvements in all crucial information for power system operators, concerning 
wind power prediction and its uncertainty estimation, providing narrower confidence 
intervals for the predicted wind power. Thus the operator can very quickly and very 
accurately have improved wind power forecast with narrower confidence intervals 
based on the initial wind power forecast provided by the Neuro-fuzzy tool or any 
other wind power forecasting algorithm. Thus, the power systems operators have at 
their disposal much more accurate information on the expected wind power in the 
following few hours, that can be used as inputs for the economic scheduling functions 
of the power systems. Reduction of the uncertainty concerning wind power, especially 
for autonomous power systems helps in increasing the confidence of the power sys-
tems operators on wind power and its further exploitation. 
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